Compute risk scores from a fitted survival model
calc_risk_score.Rd
This helper wraps stats::predict()
for coxph
objects so that package users
can easily obtain linear predictors (default) or risk scores to feed into
downstream metrics such as time-dependent ROC or Harrell's C-index.
Arguments
- model
A fitted
coxph
object.- data
Optional dataset on which to score the model. Defaults to the training data stored within
model
.- type
Scale of the predictions to return. Either
"lp"
(linear predictor, the default) or"risk"
. IfNULL
or omitted,"lp"
is used.- ...
Additional arguments passed to
stats::predict()
.
Examples
if (requireNamespace("survival", quietly = TRUE)) {
fit <- survival::coxph(survival::Surv(time, status) ~ age, data = survival::lung)
# Linear predictor on the training data
calc_risk_score(fit)
# Risk scale predictions on new data
calc_risk_score(fit, survival::lung, type = "risk")
}
#> [1] 1.2414342 1.1095408 0.8863035 0.9030515 0.9552185 1.2414342 1.1095408
#> [8] 1.1736362 0.8379001 0.9732688 0.9030515 1.1095408 1.1095408 0.9552185
#> [15] 0.9030515 1.0889632 1.1518699 1.0103991 0.8863035 0.9030515 1.0889632
#> [22] 0.7774491 0.7921401 0.9201160 1.1958138 1.1518699 0.9552185 1.1518699
#> [29] 0.8379001 1.2414342 1.1305073 1.2184105 0.7630305 0.9552185 0.9732688
#> [36] 0.9916602 1.0489459 1.0687673 1.2414342 1.0294921 1.1518699 1.2184105
#> [43] 0.9375030 0.9552185 1.1095408 1.2887950 1.2414342 1.0103991 1.2414342
#> [50] 0.7921401 1.1958138 1.0103991 1.1095408 0.9201160 0.9375030 0.9916602
#> [57] 1.0489459 0.9030515 0.9201160 1.0294921 1.2648930 0.7630305 1.2184105
#> [64] 1.0489459 1.1305073 1.1095408 1.0889632 1.0294921 1.1095408 1.0889632
#> [71] 1.0103991 0.7630305 1.2414342 0.6569031 0.8379001 1.1736362 0.8071088
#> [78] 0.8863035 1.4152534 1.2184105 0.9375030 0.8698660 0.6819640 0.7079810
#> [85] 0.7079810 1.1736362 0.9916602 0.9732688 0.7079810 1.1958138 1.0103991
#> [92] 1.1518699 1.0687673 0.9030515 1.1305073 1.1958138 1.1305073 1.1736362
#> [99] 1.0294921 1.1518699 0.9201160 1.1305073 0.8863035 1.0103991 0.9375030
#> [106] 1.0687673 0.8537335 1.0889632 0.8698660 1.2648930 1.1305073 0.7079810
#> [113] 1.3890060 1.2648930 0.8537335 1.2887950 0.7774491 1.1095408 1.0687673
#> [120] 1.3890060 1.2648930 0.9552185 1.1305073 1.1958138 1.1518699 1.0687673
#> [127] 0.7921401 1.0294921 1.3131487 0.7630305 0.9375030 0.8379001 0.7488793
#> [134] 0.8698660 1.0889632 1.2414342 0.9201160 0.8863035 0.8537335 0.8863035
#> [141] 1.2184105 1.2414342 1.2887950 1.0489459 0.9030515 0.8379001 1.1736362
#> [148] 0.8537335 1.4419967 0.9375030 1.1518699 0.9552185 0.9916602 0.8379001
#> [155] 0.8698660 1.1305073 1.1095408 0.9916602 1.0103991 0.8863035 0.9916602
#> [162] 0.7079810 1.1305073 1.0103991 1.0294921 0.9030515 0.9552185 0.7349905
#> [169] 0.9732688 1.0489459 0.9732688 0.9201160 0.8863035 0.6948507 0.8379001
#> [176] 0.9375030 0.8863035 0.8698660 0.8379001 1.2414342 0.9552185 0.6447201
#> [183] 1.0687673 1.0489459 0.8071088 0.7213593 1.1958138 0.9201160 1.0294921
#> [190] 0.8379001 1.1958138 0.8223603 0.7921401 1.0294921 1.1736362 1.1518699
#> [197] 1.0103991 1.0294921 0.8223603 0.9552185 1.0294921 1.2184105 1.0103991
#> [204] 0.7921401 1.0103991 0.9916602 0.8698660 0.7921401 1.1305073 0.9375030
#> [211] 0.9552185 1.0889632 1.1305073 1.0294921 1.0489459 1.0489459 0.6693163
#> [218] 1.2887950 1.1518699 0.9030515 1.0889632 1.1736362 1.2887950 1.3131487
#> [225] 0.6447201 1.2648930 1.0687673 0.9201160